Bayesian regression and classification using mixtures of Gaussian processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Regression and Classification Using Mixtures of Gaussian Processes

For a large data-set with groups of repeated measurements, a mixture model of Gaussian process priors is proposed for modelling the heterogeneity among the different replications. A hybrid Markov chain Monte Carlo (MCMC) algorithm is developed for the implementation of the model for regression and classification. The regression model and its implementation are illustrated by modelling observed ...

متن کامل

Bayesian Classification With Gaussian Processes

We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c = 1, o, m. For a twoclass problem, the probability of class one given x is estimated by s(y(x)), where s(y) = 1/(1 + ey ). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over u...

متن کامل

Variational Mixtures of Gaussian Processes for Classification

Gaussian Processes (GPs) are powerful tools for machine learning which have been applied to both classification and regression. The mixture models of GPs were later proposed to further improve GPs for data modeling. However, these models are formulated for regression problems. In this work, we propose a new Mixture of Gaussian Processes for Classification (MGPC). Instead of the Gaussian likelih...

متن کامل

Mixtures of Gaussian Processes

We introduce the mixture of Gaussian processes (MGP) model which is useful for applications in which the optimal bandwidth of a map is input dependent. The MGP is derived from the mixture of experts model and can also be used for modeling general conditional probability densities. We discuss how Gaussian processes -in particular in form of Gaussian process classification, the support vector mac...

متن کامل

Hierarchical Gaussian Processes for Large Scale Bayesian Regression

We present a deep hierarchical mixture-of-experts model for scalable Gaussian process (GP) regression, which allows for highly parallel and distributed computation on a large number of computational units, enabling the application of GP modelling to large data sets with tens of millions of data points without an explicit sparse representation. The key to the model is the subdivision of the data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Adaptive Control and Signal Processing

سال: 2003

ISSN: 0890-6327,1099-1115

DOI: 10.1002/acs.744